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1. Introduction 

Most proprietary off-the-shelf GIS software packages provide basic visibility analysis 

tools, but these are generally slow, making real-time animation of viewsheds 

impossible and detailed analysis of whole landscapes using high resolution DEMs 

impractical. The Viewshed Explorer is a simple, easy to use and highly efficient 

viewshed algorithm and desk top tool for interrogating viewsheds in real-time using 

large high resolution digital surface models and batch processing of exhaustive 

cumulative viewshed analyses for landscape visualisation and assessment. 

The following sections of this manual describe the principles used in developing the 

Viewshed Explorer tool, the tool interface and its use. 
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2. Underlying principles 

Visibility analyses in GIS are used to calculate the theoretical area visible from an 

observation point or series of observation points across a given landscape taking 

terrain surface height and other barriers to intervisibility such as man-made 

structures and tree cover into account. There are many applications of visibility 

analyses in GIS ranging from landscape visualisation studies (Ghadirian and Bishop, 

2008), landscape perception (Habron, 1998) and optimum siting of infrastructure and 

facilities (Kim et al., 2004) through to impact assessment and landscape evaluation 

(Gulinck et al., 2001). Other examples from the literature include evaluation of the 

inter-visibility between archaeological sites (Fisher et al., 1997), siting of mobile 

communications towers (Oda et al., 2000), assessment of Zones of Visual Influence 

(ZVIs) from wind farm developments (Bishop and Miller, 2007) and modelling 

absence of human artefacts in developing wilderness quality indices (Carver et al., 

2012).  

One of the principal problems with visibility analysis is that they are computationally 

very intensive and times taken to calculate a viewshed for even a single observation 

point across large, high resolution terrain models can be long, especially if wanting to 

take distance decay effects into account. When dealing with a small numbers of 

observation points (npoints < x103) then off-the-shelf visibility analyses provided by 

proprietary GIS are more than adequate. However, when dealing with much larger 

numbers of observation points (npoints >> x103) with significant search radii (r > 

x103 cells) across very large, high resolution DEMs (ncells > x 106) the speed at 

which these standard tools run can become a significant bottleneck in the analysis 

workflow. This was the case with a recent project to develop indices of wildness for 

the Scottish national parks where it was necessary to model the absence of modern 

human artefacts within the landscape based on visibility measures taking distance 

decay effects into account at a resolution of 20m. Estimated run times measured in 

years rather than days or weeks using proprietary GIS software meant a more 

efficient approach had to be found (Carver et al., 2012). An innovative solution was 

created utilising ray-casting methods and a voxel-based viewshed transform to 

produce a practical tool for calculating millions of viewsheds on a standard desktop 

PC. This paper describes the voxel-viewshed transform approach adopted, software 

development and testing, and a number of example applications within the context of 

landscape assessment. 

A number of authors have previously identified speed and efficiency of the 

algorithms used as a possible area for improvement. A variety of efficient algorithms 

have therefore been developed and reported in the geocomputation literature. These 

include examples such as R2, R3, XDraw, line-rasterisation, tracking-in, tracking-out, 

etc., many of which rely on making crucial trade-offs between accuracy and speed 

(e.g. Andrade et al., 2011). While some authors have experimented with algorithm 

efficiency, others have looked towards advances in computing power to address the 

problem, such as the application of grid computing and parallel computing 
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architectures (Mills et al., 1992; Ware et al., 1996; Kidner et al., 1997; Ware et al., 

1998; Rana and Sharma, 2006). Despite these improvements, few if any, seem to 

have developed into widely used tools or found their way onto users’ desktops or into 

proprietary GIS toolkits. 

The algorithm employed here is very similar to the R2 ray casting algorithm 

described by Franklin & Ray (1994). Such ray casting algorithms have been 

implemented in computer gaming software since the early 1990s (e.g. Wimmer et al., 

1999), but have now been largely usurped by polygon-based approaches supported 

by modern graphics hardware (e.g. Krüger & Westermann, 2005). It is unclear 

whether the brevity of their success in the gaming field has any bearing on why they 

have been seemingly overlooked by developers of mainstream GIS software and 

tools, but they can be shown to be of enormous practical benefit for terrain based 

visibility analyses linked to GIS. 

Theoretically, the computation time of algorithms like R2 is linear in the number of 

cells which constitute the region of interest for which visibility is to be computed. 

However the performance can in practice be sub-linear, owing to the fact that as a 

ray is cast further and further from an observer point, it is increasingly likely to have 

encountered a feature substantial enough to constitute a “horizon”, at which point the 

ray can be terminated. This effect is most pronounced in the presence of rugged 

terrain, and can be further capitalised upon by employing pre-computed tables and 

dynamic programming techniques for the rapid identification of regions of potential 

visibility. 

 

In the voxel surface model used here, each of the raster cells in a digital terrain 

model are projected as a series of vertical columnar elements of single-cell size in 

the plan view whereby vertical and horizontal surfaces can be independently 

checked for full or partial visibility. Cells, or more correctly “voxels” (for volume cells), 

are traversed from the observer to each perimeter voxel of the terrain model. For 

each voxel lying on the perimeter of the potentially visible area surrounding the 

observer, a ray is traced from the observer voxel. This is done in a sequential 

fashion so that only once such a ray-cast completes, is the next perimeter voxel 

considered. Voxels already encountered in previous traversals do not have their 

visibility re-assessed, even if the portion of the voxel visible may be different for 

subsequent ray-casts. This process is illustrated in Figure 1. 
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Figure 1.  Ray casting and checking for partial/full visibility 

 

Although we use the term “ray”, each is better thought of as a “sheet”, defined by an 

upper and lower bound, which fans out vertically from the observer location. As a ray 

propagates outwards from the observer and visible voxels are encountered, the 

lower bound of this sheet is updated so as to inform the visibility of subsequent 

voxels. Subsequent voxels occluded by this lower bound can be ignored, and the 

casting of a ray can then be terminated early if it can be determined that no more 

voxels can possibly intersect with the sheet. Any voxels which intersect a 

propagating sheet are deemed visible, with the extent of visibility depending upon 

where on the voxel's column the lower bound of the sheet intersects, and also 

whether the upper surface of the voxel is visible (i.e. whether the observer is looking 

from above or below). This visible portion is “read off” and its height and area in the 

observer's field-of-view calculated and stored. This process is illustrated in figure 2. 

Notable efficiencies over the R2 method (Franklin & Ray, 1994) are introduced by 

two related assumptions: 

 

• If a voxel is found to be visible, then although only a given portion of its 

column may be visible and its upper surface may or may not be visible, 

the voxel is always considered wholly visible in the planar sense. In 

other words, we do not concern ourselves with what quadrant or which 

sides of a voxel may be visible. 

• If a voxel has been found to be visible to a previously cast ray, then its 

visibility need not be recomputed for subsequent rays. This is because 

it is logically impossible for a cell to be more than wholly visible to the 

observer. The standard R2 implementation makes a similar logical 

assumption, but re-calculates feature visibility for every ray which 
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encounters a feature and then retains that belonging to the single most 

proximate ray (Franklin & Ray, 1994). 

Further efficiencies are generated by tiling the data and working on each tile in RAM. 

This minimizes time consuming disk access with input/output occurring only when 

reading source data into the model and when writing out the final results, and allows 

tiles to be farmed out to multiple parallel processors.  The resulting efficiencies 

realized mean that the voxel viewshed transform is able to out-perform the 

equivalent calculations using proprietary GIS software by roughly 3 orders of 

magnitude (before parallelization). 

 

 

 

Figure 2. Determining observer’s FOV and vertical portion of voxel visible 
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3. Tool interface 

The algorithm has been embedded within a user-friendly GUI and can be run either 

from the desktop on a single PC or across the network on multiple machines to 

further speed up processing times for very large areas. A tiling-tool has been added 

to facilitate this process. The interface allows users to input a large DEM as a 

floating point raster and a feature layer containing separate feature classes. 

Observer height and maximum/minimum search radius can also be set. Distance 

decay effects can be calculated as 1/d or 1/d2 giving the relative height and surface 

area of a feature cell, respectively (where d = distance from the observer). The size 

of the DEM used is limited only by the RAM available. If the DEM is too large to fit in 

RAM, the tiling-tool can be used to divide up the DEM and run the transform across 

2 or more tiles using an appropriate overlap distance to take into account visibility 

from outside and into adjacent tiles. Figure 3 shows the main GUI and real-time 

viewshed explorer and Figure 4 shows the tiling-tool. When run in batch mode, the 

viewshed of every grid cell in the input DEM is calculated and the relative proportion 

of the viewshed occupied by a feature or the background terrain is stored. Figure 5 

shows the output window with an example completed viewshed transform. Output 

viewshed transforms from the tool can be generated either as separate feature 

layers or combined layers and saved on logged and unlogged scales in floating point 

grids. These can then be input into a GIS package for combination with other data 

layers.  

 

Figure 3. Main GUI and real-time viewshed explorer 
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Figure 4. Tiling-tool 

 

 

Figure 5. Output window and completed viewshed transform 
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4. Use 

The following sections detail how to use the Viewshed Explorer tool in detail. 

 

a. Preparing datasets 

Datasets to be used with the Viewshed Explorer are to be imported as floating point 

grid format. Most GIS software provide conversion tools for converting between 

various raster formats including floating point grids. For example, ArcGIS can 

convert from any raster format to floating point grid using: 

ArcToolBox > Conversion Tools > From Raster > To float 

The Viewshed Explorer software requires 2 basic input grids: 

• A raster digital elevation model (DEM). This can be a floating point grid (i.e. 

values in the cells can have significant figures after the decimal) 

• A raster feature layer containing the locations of cells designated as a feature 

of interest which is to have its visibility modelled. This must be an integer grid 

(i.e. values in the cells must be rounded to the nearest whole number). The 

feature layer can contain up to seven classes number 1 through to 7 plus a 

“background” cell value of 0 (zero). 

Both floating point grids should be exactly the same dimensions in terms of both cell 

size and row/column numbers, and should have exactly the same origin (i.e. cover 

the same area at the same resolution).  

Each floating point grid will consist of two files with the suffixes .flt (the binary floating 

point grid) and .hdr (the header file). 

The header file should be checked (e.g. in Notepad or other text editor) to make sure 

the xllcorner, yllcorner and cellsize values are all integer (i.e. have no significant 

figures after the decimal). If they do contain significant figures after the decimal these 

should be edited out including the decimal point as follows: 

 

Original version Edited version 

ncols         4959 

nrows         7201 

xllcorner     10507.935 

yllcorner     515183.564 

cellsize      100.1 

NODATA_value  -9999 

byteorder     LSBFIRST 

ncols         4959 

nrows         7201 

xllcorner     10507 

yllcorner     515183 

cellsize      100 

NODATA_value  -9999 

byteorder     LSBFIRST 
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When creating input data layers you need to make sure the area of interest is 

surrounded by an additional “edge” distance of twice the maximum search radius 

you will be using in the viewshed calculations. This is to ensure that no edge effects 

will be seen in your area of interest (see below under section c. tiling for further 

details) 

Check list: 

1. Two floating point rasters: one DEM grid (can be floating point), one 

feature grid (must be integer with maximum of 7 classes numbered 1 to 

7 plus 0 background class) making sure an edge of 2x maximum 

viewshed is included around the area of interest. 

2. Same dimensions and resolution 

3. Same extent 

4. No decimal figures after xllcorner, yllcorner and cellsize in .hdr files 

 

b. Loading data 

Data is loaded into the Viewshed Explorer tool using the two “Select…” buttons on 

the top left of the tool window. Use “Select DEM/DSM” to input the floating point grid 

for the raster digital elevation model, and use “Select feature data” button to input the 

integer floating point grid for the raster layer containing the feature locations. The 

“Select feature data” button is grey out and unavailable until a DEM has been loaded 

(see Figure 3). Clicking on the buttons will open a folder/file selection window. Use 

this to navigate to and select the required .flt file for the respective inputs.  

Check list: 

1. Use “Select DEM/DSM” button to select and load raster DEM grid 

2. Use “Select feature data” button to select and load raster feature grid 

 

c. Tiling 

If the data is a small enough area to fit in its entirety into the computer’s RAM you 

can just run the model in a single tile. However, if the dataset is large (i.e. covering a 

large area and/or at high resolution) it is better to tile the data and run the model over 

a series of tiles. This also facilitates running the model on several computers and/or 

utilising the computer’s multicore CPU to run a number of tiles at once. This can be 

done simply by running the Viewshed Explorer software multiple times. The software 

allows you to view/select tiles from 1x1 (a single tile) and split the data and model 

runs over up to 10x10 tiles.   

The “View/select tiles” button is used to views and selected the tiles. This generates 

a new window showing a map of the data and the tile boundaries/overlaps and the 

tiling controls (see Figure 4). 
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Use the Horizontal and Vertical slider bars to specify the number or columns and 

rows used to tile the data. 

When viewing/selecting you also need to specify the overlap distance using the 

slider bar. Fine adjustments to the overlap distance can be made using the left/right 

arrow keys on the keyboard. This is the maximum search radius used in the 

viewshed calculations specified in cells. 

Note: because the software uses the overlap distance to specify the search radius 

you will need to make sure the input data includes an additional edge of 2x the 

maximum search radius to avoid edge effects in the area of interest (see above 

under section a. preparing datasets).  

There are two modes to the tiling process: fixed boundaries, and all tiles equal. Fixed 

boundaries is the default. 

Select the tile to run by clicking on the tile. Tiles which are currently running with 

show a progress time on the tile and tiles which have already completed are 

indicated by a tick. Clicking on a tile will load this data ready for the model run and 

return to the main menu with the map data showing. Moving the mouse over the 

loaded map shows an interactive animation of the viewshed using the parameters 

set in the tiling tool. 

Check list: 

1. Use “View/select tiles” to see loaded data and control tiling 

2. Use Horizontal and Vertical sliders to specify number of columns and rows 

in tiling the loaded data 

3. Use the Overlap slider to specify the maximum search radius to be used 

and specify the overlap between tiles 

4. Click on the tile to run to load this and prepare for model run 

 

d. Terrain offsets 

The terrain offset for the viewer eye-level height can be specified in the main menu 

using Observer Height. The default is 175cm. Variable terrain offsets for feature data 

can be added to the DEM/DSM grid prior to using the Viewshed Explorer. It is 

recommended you do this in your GIS. If all the features are the same height this can 

be set using Unit Height. The default is 100cm (see Figure 3).  

  

e. Distance decay functions 

Three options are provided for distance decay functions (see Figure 3). These are 

none (calculates simple areas from which a feature is visible with no distance 

decay), linear (calculates distance decay based on apparent height of the feature), 

and squared (calculates distance decay based on apparent vertical area of the 

feature). These are selected using the radio buttons. Additionally the minimum and 
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maximum search radius can be specified using the slider bars but in most instances 

these should be unchanged from that set in the tilling tool. 

 

f. Model runs 

Model runs are initiated by clicking on the “Do Transform” button. A warning saying 

that this could take some time and slow PC performance is shown. Click on OK to 

accept and start the model run. 

Model runs can be monitored by clicking on the “Output” tab at the right of the map 

window. This shows the progress of the viewshed being calculated. The views can 

be refreshed by clicking on the “lightening” button (see Figure 5). 

The top of the window shows the current cell row/column number, cells per second 

being processed and the time left to completion. These numbers are approximate. 

Once completed, the “Transform complete” window is displayed. Click OK to return 

to the output tab window. 

There are two options for saving the output: either as a JPEG (the output is 

generated as a simple JPEG image format file), or as a floating point grid. The latter 

can be imported back into GIS for further analysis. Layers for each input feature type 

can be saved separately or together by selecting which layers to output in the 

“Available viewshed layers” sub window suing CTRL + CLICK to select. Data can be 

output as normal or log scale. Click on “Export FLOAT” to export the selected layers. 

As a general rule, export layers using log scale for better visualisation in GIS. 

Check list: 

1. Use “Do Transform” to run the model 

2. Use “Output” tab to monitor progress 

3. When complete use “Available viewshed layers” sub window to select 

layers for output  

4. Export selected layers using “Export FLOAT” button 

 

g. Interpreting output 

The output from model runs gives the proportion of the total viewshed that is 

occupied by the background value in the feature layer (i.e. the zero class). Therefore 

the numbers in the output vary showing high numbers where very little of the input 

features (classes 1 – 7) are visible and the viewshed is mainly background, and very 

low numbers where the viewshed is dominated by the input features. A value of zero 

(0) is given in the output for areas where no input features are visible at all.  

 

 


