
1

Viewshed Explorer

User Guide v.1

School of Geography

University of Leeds

2

Contents

1. Introduction 2

2. Underlying principles 3

3. Tool interface 8

4. Use 10

a. Preparing datasets 10

b. Loading data 11

c. Tiling 11

d. Terrain offsets 12

e. Distance decay functions 12

f. Model runs 13

g. Interpreting output 13

3

1. Introduction

Most proprietary off-the-shelf GIS software packages provide basic visibility analysis

tools, but these are generally slow, making real-time animation of viewsheds

impossible and detailed analysis of whole landscapes using high resolution DEMs

impractical. The Viewshed Explorer is a simple, easy to use and highly efficient

viewshed algorithm and desk top tool for interrogating viewsheds in real-time using

large high resolution digital surface models and batch processing of exhaustive

cumulative viewshed analyses for landscape visualisation and assessment.

The following sections of this manual describe the principles used in developing the

Viewshed Explorer tool, the tool interface and its use.

4

2. Underlying principles

Visibility analyses in GIS are used to calculate the theoretical area visible from an

observation point or series of observation points across a given landscape taking

terrain surface height and other barriers to intervisibility such as man-made

structures and tree cover into account. There are many applications of visibility

analyses in GIS ranging from landscape visualisation studies (Ghadirian and Bishop,

2008), landscape perception (Habron, 1998) and optimum siting of infrastructure and

facilities (Kim et al., 2004) through to impact assessment and landscape evaluation

(Gulinck et al., 2001). Other examples from the literature include evaluation of the

inter-visibility between archaeological sites (Fisher et al., 1997), siting of mobile

communications towers (Oda et al., 2000), assessment of Zones of Visual Influence

(ZVIs) from wind farm developments (Bishop and Miller, 2007) and modelling

absence of human artefacts in developing wilderness quality indices (Carver et al.,

2012).

One of the principal problems with visibility analysis is that they are computationally

very intensive and times taken to calculate a viewshed for even a single observation

point across large, high resolution terrain models can be long, especially if wanting to

take distance decay effects into account. When dealing with a small numbers of

observation points (npoints < x103) then off-the-shelf visibility analyses provided by

proprietary GIS are more than adequate. However, when dealing with much larger

numbers of observation points (npoints >> x103) with significant search radii (r >

x103 cells) across very large, high resolution DEMs (ncells > x 106) the speed at

which these standard tools run can become a significant bottleneck in the analysis

workflow. This was the case with a recent project to develop indices of wildness for

the Scottish national parks where it was necessary to model the absence of modern

human artefacts within the landscape based on visibility measures taking distance

decay effects into account at a resolution of 20m. Estimated run times measured in

years rather than days or weeks using proprietary GIS software meant a more

efficient approach had to be found (Carver et al., 2012). An innovative solution was

created utilising ray-casting methods and a voxel-based viewshed transform to

produce a practical tool for calculating millions of viewsheds on a standard desktop

PC. This paper describes the voxel-viewshed transform approach adopted, software

development and testing, and a number of example applications within the context of

landscape assessment.

A number of authors have previously identified speed and efficiency of the

algorithms used as a possible area for improvement. A variety of efficient algorithms

have therefore been developed and reported in the geocomputation literature. These

include examples such as R2, R3, XDraw, line-rasterisation, tracking-in, tracking-out,

etc., many of which rely on making crucial trade-offs between accuracy and speed

(e.g. Andrade et al., 2011). While some authors have experimented with algorithm

efficiency, others have looked towards advances in computing power to address the

problem, such as the application of grid computing and parallel computing

5

architectures (Mills et al., 1992; Ware et al., 1996; Kidner et al., 1997; Ware et al.,

1998; Rana and Sharma, 2006). Despite these improvements, few if any, seem to

have developed into widely used tools or found their way onto users’ desktops or into

proprietary GIS toolkits.

The algorithm employed here is very similar to the R2 ray casting algorithm

described by Franklin & Ray (1994). Such ray casting algorithms have been

implemented in computer gaming software since the early 1990s (e.g. Wimmer et al.,

1999), but have now been largely usurped by polygon-based approaches supported

by modern graphics hardware (e.g. Krüger & Westermann, 2005). It is unclear

whether the brevity of their success in the gaming field has any bearing on why they

have been seemingly overlooked by developers of mainstream GIS software and

tools, but they can be shown to be of enormous practical benefit for terrain based

visibility analyses linked to GIS.

Theoretically, the computation time of algorithms like R2 is linear in the number of

cells which constitute the region of interest for which visibility is to be computed.

However the performance can in practice be sub-linear, owing to the fact that as a

ray is cast further and further from an observer point, it is increasingly likely to have

encountered a feature substantial enough to constitute a “horizon”, at which point the

ray can be terminated. This effect is most pronounced in the presence of rugged

terrain, and can be further capitalised upon by employing pre-computed tables and

dynamic programming techniques for the rapid identification of regions of potential

visibility.

In the voxel surface model used here, each of the raster cells in a digital terrain

model are projected as a series of vertical columnar elements of single-cell size in

the plan view whereby vertical and horizontal surfaces can be independently

checked for full or partial visibility. Cells, or more correctly “voxels” (for volume cells),

are traversed from the observer to each perimeter voxel of the terrain model. For

each voxel lying on the perimeter of the potentially visible area surrounding the

observer, a ray is traced from the observer voxel. This is done in a sequential

fashion so that only once such a ray-cast completes, is the next perimeter voxel

considered. Voxels already encountered in previous traversals do not have their

visibility re-assessed, even if the portion of the voxel visible may be different for

subsequent ray-casts. This process is illustrated in Figure 1.

6

Figure 1. Ray casting and checking for partial/full visibility

Although we use the term “ray”, each is better thought of as a “sheet”, defined by an

upper and lower bound, which fans out vertically from the observer location. As a ray

propagates outwards from the observer and visible voxels are encountered, the

lower bound of this sheet is updated so as to inform the visibility of subsequent

voxels. Subsequent voxels occluded by this lower bound can be ignored, and the

casting of a ray can then be terminated early if it can be determined that no more

voxels can possibly intersect with the sheet. Any voxels which intersect a

propagating sheet are deemed visible, with the extent of visibility depending upon

where on the voxel's column the lower bound of the sheet intersects, and also

whether the upper surface of the voxel is visible (i.e. whether the observer is looking

from above or below). This visible portion is “read off” and its height and area in the

observer's field-of-view calculated and stored. This process is illustrated in figure 2.

Notable efficiencies over the R2 method (Franklin & Ray, 1994) are introduced by

two related assumptions:

• If a voxel is found to be visible, then although only a given portion of its

column may be visible and its upper surface may or may not be visible,

the voxel is always considered wholly visible in the planar sense. In

other words, we do not concern ourselves with what quadrant or which

sides of a voxel may be visible.

• If a voxel has been found to be visible to a previously cast ray, then its

visibility need not be recomputed for subsequent rays. This is because

it is logically impossible for a cell to be more than wholly visible to the

observer. The standard R2 implementation makes a similar logical

assumption, but re-calculates feature visibility for every ray which

7

encounters a feature and then retains that belonging to the single most

proximate ray (Franklin & Ray, 1994).

Further efficiencies are generated by tiling the data and working on each tile in RAM.

This minimizes time consuming disk access with input/output occurring only when

reading source data into the model and when writing out the final results, and allows

tiles to be farmed out to multiple parallel processors. The resulting efficiencies

realized mean that the voxel viewshed transform is able to out-perform the

equivalent calculations using proprietary GIS software by roughly 3 orders of

magnitude (before parallelization).

Figure 2. Determining observer’s FOV and vertical portion of voxel visible

8

3. Tool interface

The algorithm has been embedded within a user-friendly GUI and can be run either

from the desktop on a single PC or across the network on multiple machines to

further speed up processing times for very large areas. A tiling-tool has been added

to facilitate this process. The interface allows users to input a large DEM as a

floating point raster and a feature layer containing separate feature classes.

Observer height and maximum/minimum search radius can also be set. Distance

decay effects can be calculated as 1/d or 1/d2 giving the relative height and surface

area of a feature cell, respectively (where d = distance from the observer). The size

of the DEM used is limited only by the RAM available. If the DEM is too large to fit in

RAM, the tiling-tool can be used to divide up the DEM and run the transform across

2 or more tiles using an appropriate overlap distance to take into account visibility

from outside and into adjacent tiles. Figure 3 shows the main GUI and real-time

viewshed explorer and Figure 4 shows the tiling-tool. When run in batch mode, the

viewshed of every grid cell in the input DEM is calculated and the relative proportion

of the viewshed occupied by a feature or the background terrain is stored. Figure 5

shows the output window with an example completed viewshed transform. Output

viewshed transforms from the tool can be generated either as separate feature

layers or combined layers and saved on logged and unlogged scales in floating point

grids. These can then be input into a GIS package for combination with other data

layers.

Figure 3. Main GUI and real-time viewshed explorer

9

Figure 4. Tiling-tool

Figure 5. Output window and completed viewshed transform

10

4. Use

The following sections detail how to use the Viewshed Explorer tool in detail.

a. Preparing datasets

Datasets to be used with the Viewshed Explorer are to be imported as floating point

grid format. Most GIS software provide conversion tools for converting between

various raster formats including floating point grids. For example, ArcGIS can

convert from any raster format to floating point grid using:

ArcToolBox > Conversion Tools > From Raster > To float

The Viewshed Explorer software requires 2 basic input grids:

• A raster digital elevation model (DEM). This can be a floating point grid (i.e.

values in the cells can have significant figures after the decimal)

• A raster feature layer containing the locations of cells designated as a feature

of interest which is to have its visibility modelled. This must be an integer grid

(i.e. values in the cells must be rounded to the nearest whole number). The

feature layer can contain up to seven classes number 1 through to 7 plus a

“background” cell value of 0 (zero).

Both floating point grids should be exactly the same dimensions in terms of both cell

size and row/column numbers, and should have exactly the same origin (i.e. cover

the same area at the same resolution).

Each floating point grid will consist of two files with the suffixes .flt (the binary floating

point grid) and .hdr (the header file).

The header file should be checked (e.g. in Notepad or other text editor) to make sure

the xllcorner, yllcorner and cellsize values are all integer (i.e. have no significant

figures after the decimal). If they do contain significant figures after the decimal these

should be edited out including the decimal point as follows:

Original version Edited version

ncols 4959

nrows 7201

xllcorner 10507.935

yllcorner 515183.564

cellsize 100.1

NODATA_value -9999

byteorder LSBFIRST

ncols 4959

nrows 7201

xllcorner 10507

yllcorner 515183

cellsize 100

NODATA_value -9999

byteorder LSBFIRST

11

When creating input data layers you need to make sure the area of interest is

surrounded by an additional “edge” distance of twice the maximum search radius

you will be using in the viewshed calculations. This is to ensure that no edge effects

will be seen in your area of interest (see below under section c. tiling for further

details)

Check list:

1. Two floating point rasters: one DEM grid (can be floating point), one

feature grid (must be integer with maximum of 7 classes numbered 1 to

7 plus 0 background class) making sure an edge of 2x maximum

viewshed is included around the area of interest.

2. Same dimensions and resolution

3. Same extent

4. No decimal figures after xllcorner, yllcorner and cellsize in .hdr files

b. Loading data

Data is loaded into the Viewshed Explorer tool using the two “Select…” buttons on

the top left of the tool window. Use “Select DEM/DSM” to input the floating point grid

for the raster digital elevation model, and use “Select feature data” button to input the

integer floating point grid for the raster layer containing the feature locations. The

“Select feature data” button is grey out and unavailable until a DEM has been loaded

(see Figure 3). Clicking on the buttons will open a folder/file selection window. Use

this to navigate to and select the required .flt file for the respective inputs.

Check list:

1. Use “Select DEM/DSM” button to select and load raster DEM grid

2. Use “Select feature data” button to select and load raster feature grid

c. Tiling

If the data is a small enough area to fit in its entirety into the computer’s RAM you

can just run the model in a single tile. However, if the dataset is large (i.e. covering a

large area and/or at high resolution) it is better to tile the data and run the model over

a series of tiles. This also facilitates running the model on several computers and/or

utilising the computer’s multicore CPU to run a number of tiles at once. This can be

done simply by running the Viewshed Explorer software multiple times. The software

allows you to view/select tiles from 1x1 (a single tile) and split the data and model

runs over up to 10x10 tiles.

The “View/select tiles” button is used to views and selected the tiles. This generates

a new window showing a map of the data and the tile boundaries/overlaps and the

tiling controls (see Figure 4).

12

Use the Horizontal and Vertical slider bars to specify the number or columns and

rows used to tile the data.

When viewing/selecting you also need to specify the overlap distance using the

slider bar. Fine adjustments to the overlap distance can be made using the left/right

arrow keys on the keyboard. This is the maximum search radius used in the

viewshed calculations specified in cells.

Note: because the software uses the overlap distance to specify the search radius

you will need to make sure the input data includes an additional edge of 2x the

maximum search radius to avoid edge effects in the area of interest (see above

under section a. preparing datasets).

There are two modes to the tiling process: fixed boundaries, and all tiles equal. Fixed

boundaries is the default.

Select the tile to run by clicking on the tile. Tiles which are currently running with

show a progress time on the tile and tiles which have already completed are

indicated by a tick. Clicking on a tile will load this data ready for the model run and

return to the main menu with the map data showing. Moving the mouse over the

loaded map shows an interactive animation of the viewshed using the parameters

set in the tiling tool.

Check list:

1. Use “View/select tiles” to see loaded data and control tiling

2. Use Horizontal and Vertical sliders to specify number of columns and rows

in tiling the loaded data

3. Use the Overlap slider to specify the maximum search radius to be used

and specify the overlap between tiles

4. Click on the tile to run to load this and prepare for model run

d. Terrain offsets

The terrain offset for the viewer eye-level height can be specified in the main menu

using Observer Height. The default is 175cm. Variable terrain offsets for feature data

can be added to the DEM/DSM grid prior to using the Viewshed Explorer. It is

recommended you do this in your GIS. If all the features are the same height this can

be set using Unit Height. The default is 100cm (see Figure 3).

e. Distance decay functions

Three options are provided for distance decay functions (see Figure 3). These are

none (calculates simple areas from which a feature is visible with no distance

decay), linear (calculates distance decay based on apparent height of the feature),

and squared (calculates distance decay based on apparent vertical area of the

feature). These are selected using the radio buttons. Additionally the minimum and

13

maximum search radius can be specified using the slider bars but in most instances

these should be unchanged from that set in the tilling tool.

f. Model runs

Model runs are initiated by clicking on the “Do Transform” button. A warning saying

that this could take some time and slow PC performance is shown. Click on OK to

accept and start the model run.

Model runs can be monitored by clicking on the “Output” tab at the right of the map

window. This shows the progress of the viewshed being calculated. The views can

be refreshed by clicking on the “lightening” button (see Figure 5).

The top of the window shows the current cell row/column number, cells per second

being processed and the time left to completion. These numbers are approximate.

Once completed, the “Transform complete” window is displayed. Click OK to return

to the output tab window.

There are two options for saving the output: either as a JPEG (the output is

generated as a simple JPEG image format file), or as a floating point grid. The latter

can be imported back into GIS for further analysis. Layers for each input feature type

can be saved separately or together by selecting which layers to output in the

“Available viewshed layers” sub window suing CTRL + CLICK to select. Data can be

output as normal or log scale. Click on “Export FLOAT” to export the selected layers.

As a general rule, export layers using log scale for better visualisation in GIS.

Check list:

1. Use “Do Transform” to run the model

2. Use “Output” tab to monitor progress

3. When complete use “Available viewshed layers” sub window to select

layers for output

4. Export selected layers using “Export FLOAT” button

g. Interpreting output

The output from model runs gives the proportion of the total viewshed that is

occupied by the background value in the feature layer (i.e. the zero class). Therefore

the numbers in the output vary showing high numbers where very little of the input

features (classes 1 – 7) are visible and the viewshed is mainly background, and very

low numbers where the viewshed is dominated by the input features. A value of zero

(0) is given in the output for areas where no input features are visible at all.

